Supplementary Information for

Green synthesis of propylene oxide directly from propane

Pierre Kube,¹ Jinhu Dong,¹ Nuria Sánchez Bastardo,² Holger Ruland,² Robert Schlögl,^{1,2} Johannes T. Margraf,³ Karsten Reuter,³ and Annette Trunschke^{1,*}

¹Fritz-Haber-Institut der Max-Planck-Gesellschaft, Department of Inorganic Chemistry,

Faradayweg 4-6, 14195 Berlin (Germany).

²Max-Planck-Institut für Chemische Energiekonversion, Department of Heterogeneous Reactions, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr (Germany).

³*Fritz-Haber-Institut der Max-Planck-Gesellschaft, Theory Department, Faradayweg 4-6, 14195 Berlin (Germany).*

kube@fhi-berlin.mpg.de jhdong@fhi-berlin.mpg.de nuria.sanchez-bastardo@cec.mpg.de holger.ruland@cec.mpg.de rs01@fhi-berlin.mpg.de margraf@fhi.mpg.de reuter@fhi.mpg.de corresponding author: trunschke@fhi-berlin.mpg.de

	$\frac{S_{BET}}{(m^2 g^{-1})}$	$(\mathrm{cm}^3\mathrm{g}^{-1})$	Impurities (wt-%)	Phase composition	Themal conductivity (W m ⁻¹ K ⁻¹)
SiO ₂	1.6	0.0004	0.014 Ti 0.003 Mn	α-quartz	7.7-8.4
Aerosil 380	394	1.8	-	Amorphous	0.02
SiC	0.1	0.0006	0.007 Ti 0.002 Mn	mixture of various SiC polytypes main component: moissanite-6H	32-270
<i>h</i> -BN	9.0	0.005	0.7 Si 0.4 Ca 0.2 Zr (0.04) Cr	Hexagonal	220-420

Supplementary Table 1: Properties of the materials filled into the reactor.

Supplementary Fig. 1: Product selectivity in the oxidation of propane using three different feeds over SiO₂.

Selectivity to **a**, propylene, **b**, propylene oxide, **c**, ethylene, **d**, CO, **e**, CO₂, **f**, acrolein, **g**, acetaldehyde, and **h**, propionaldehyde measured for three different feed compositions as indicated in the legend on top; Reaction conditions: Mass of filling material = 666 mg, T= 490°C, W/F = 1.6 to 6.0 g s ml⁻¹, feed (C₃H₈/O₂/He) = 10/15/75 (square symbols), 30/15/55 (circle symbols), 60/15/25 (triangle symbols); Conversion of O₂ reaches 100% at W/F = 6.0 g s ml⁻¹. Supplementary Table 2: Apparent activation energies measured in the present work and for the

	<i>Ea,propane</i> (kJ mol ⁻¹)	Feed composition (C ₃ H ₈ /O ₂ /Inert)
<i>h</i> -BN	230 +/-8	30/15/55
SiO ₂	286 +/-21	30/15/55
Aerosil 380	269 +/-8	30/15/55
SiC	323 +/-38	30/15/55
Quartz wool	297 +/-14	30/15/55
$BNOH^1$	184	1/1.5/3.5
h-BN ²	192	1/1/9
h-BN ³	180	1/1.5/3.5
$h\text{-BN}^4$	253	30/15/55

same and different feed compositions in the literature.

Supplementary Fig. 2: Arrhenius plot for the determination of the apparent activation energy for the used materials.

Reaction conditions: T = 470 °C - 510 °C, total flow = 10 ml min⁻¹, feed (C₃H₈/O₂/He) = 30/15/55; The error bars result from 5 chromatographic measurements.

Supplementary Fig. 3: Conversion of propane and selectivity to the products (see legend) over silica (α-quartz).

Reaction conditions: $T = 500^{\circ}C$, feed (C₃H₈/O₂/He = 30/15/55), total flow rate (10 ml/min), m = 0.666 g.

Supplementary Fig. 4: Impact of the propane concentration on the reaction rates.

a, Ratio of $r_{PO}/r_{propylene}$ and, **b**, $r_{ethylene}/r_{propylene}$ measured for SiO₂ as a function of W/F at 490°C in three different feeds as indicated in the legend; Reaction conditions: Mass of SiO₂ = 666 mg, feed (C₃H₈/O₂/He) = 10/15/75, 30/15/55, and 60/15/25.

Supplementary Fig. 5: Analysis of the contribution of interfacial reactions and diffusion limitations.

a, Propane conversion as a function of the material bed hight; Reaction conditions: $T = 490^{\circ}C$, F = 10 ml min⁻¹, feed (C₃H₈/O₂/He) = 30/15/55; Conversion of propane as a function of the total flow measured with **b**, SiO₂ and, **c**, SiC as filling materials; Reaction conditions: $T = 490^{\circ}C$, flow = 4 to 25 ml min⁻¹, feed (C₃H₈/O₂/He) = 30/15/55.

Supplementary Fig. 6: Temperature programmed reaction using *h*-BN as filler.

Reaction conditions: T = 350 °C - 490 °C, total flow = 10 ml min⁻¹, m = 665 mg, feed (C₃H₈/O₂/He) = 30/15/55, heating rate 2.5 K min⁻¹; Mass-to-charge ratios m/z 18 to 60 were recorded.

Supplementary Fig. 7: Temperature programmed reaction using SiO₂ as filler and faster heating rate.

Reaction conditions: T = 350 °C - 490 °C, flow = 10 ml min⁻¹, m = 670 mg, feed (C₃H₈/O₂/He) = 30/15/55, heating rate 5 K min⁻¹; Mass-to-charge ratios m/z 18 to 60 were recorded.

Supplementary Fig. 8: Temperature programmed reaction in an empty reactor.

Reaction conditions: T = 350 °C - 490 °C, flow = 10 ml min⁻¹, feed (C₃H₈/O₂/He) = 30/15/55, heating rate 2.5 K min⁻¹; Mass-to-charge ratios m/z 18 to 60 were recorded.

Supplementary Fig. 9: Aspen HYSYS flow-sheet for direct oxidation of propane to propylene oxide.

Stream in PFD	Global recovery (%) ^a	Mole fraction
Propane	95.73	0.9990
Propylene oxide	99.76	0.9900
Acetaldehyde	96.53	0.9548
Hydrogen	98.63	0.9978
Oxygen	94.59	0.9900
Propylene	94.93	0.9900
Helium	99.97	0.9984

Supplementary Table 3: Global recovery and mole fraction of the final streams.

^a Global recovery of comp. i (%) = Mole flow of comp. i in the stream i / Mole flow of comp. i in *Product* x 100

Supplementary Table. 4: Economic analysis of the combined process for propylene and propylene

oxide production.

How many years to profit	5	years
Total Capital Cost	17,221,700	\$
Total Operating Cost	13,974,700	\$/year
Total costs in 5 years	87,095,200	\$
Total profit from Hydrogen + Acetaldehyde + Propylene in 5 years	44,234,011	\$
Difference (Investment - Profit)	42,861,189	\$
Total propylene oxide production in 5 years	12,005	ton
Price of propylene oxide from propane dehydrogenation + propene epoxidation	3,570	\$/ton
Commercial price of PO	2,807	\$/ton

References

- 1 Shi, L. *et al.* Edge-hydroxylated Boron Nitride for Oxidative Dehydrogenation of Propane to Propylene. *ChemCatChem* **9**, 1788-1793, doi:10.1002/cctc.201700004 (2017).
- 2 Tian, J. S. *et al.* Hexagonal boron nitride catalyst in a fixed-bed reactor for exothermic propane oxidation dehydrogenation. *Chem. Eng. Sci.* **186**, 142-151, doi:10.1016/j.ces.2018.04.029 (2018).
- 3 Chen, J. J. *et al.* Boron-hyperdoped silicon for the selective oxidative dehydrogenation of propane to propylene. *Chem. Commun.* **56**, 9882-9885, doi:10.1039/d0cc02822c (2020).
- 4 Grant, J. T. *et al.* Selective oxidative dehydrogenation of propane to propene using boron nitride catalysts. *Science* **354**, 1570-1573, doi:10.1126/science.aaf7885 (2016).